MAT 562SE Differential Equations \& Linear Algebra
 Final Exam (9 Dec 2008)
 Time allowed: 120 mins

Each question carries 10 marks

1. Let

$$
\mathbf{A}=\left(\begin{array}{ccccc}
1 & 2 & -3 & 3 & -1 \\
0 & 0 & -2 & 0 & 7 \\
2 & 4 & -10 & 6 & 12 \\
2 & 4 & -5 & 6 & -5
\end{array}\right)
$$

Find
(a) the rank of \mathbf{A}.
(b) a basis for the row space of \mathbf{A}.
(c) a basis for the column space of \mathbf{A}.
(d) a basis for the null space of \mathbf{A}.
2. Let $L[y]=\frac{d^{3} y}{d t^{3}}-\frac{d^{2} y}{d t^{2}}+4 \frac{d y}{d t}-4 y$.
(a) Solve the homogeneous equation

$$
L[y]=0 .
$$

(b) Set up the appropriate form of a particular solution Y_{p} of the non-homogeneous equation

$$
L[y]=3 e^{2 t}-e^{t}+\cos 2 t,
$$

but do not determine the values of the coefficients.
3. Use the method of variation of parameters to solve

$$
y^{\prime \prime}-4 y=4 e^{2 t}
$$

4. Let

$$
\mathbf{A}=\left(\begin{array}{ccc}
-1 & 6 & 3 \\
3 & -4 & -3 \\
-6 & 12 & 8
\end{array}\right)
$$

(a) Diagonalize \mathbf{A}.
(b) Find \mathbf{A}^{6}.
(c) Express \mathbf{A}^{-1} as a polynomial of \mathbf{A}.
5. Let

$$
\mathbf{A}=\left(\begin{array}{ccc}
3 & -5 & -3 \\
3 & -8 & -4 \\
-5 & 15 & 7
\end{array}\right) \quad \text { and } \quad \mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

(a) Find $\exp A t$.
(b) Solve the initial value problem

$$
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}, \quad \mathbf{x}(0)=\left(\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right)
$$

6. Let

$$
\mathbf{A}=\left(\begin{array}{cc}
-5 & 9 \\
-1 & 1
\end{array}\right) \quad \text { and } \quad \mathbf{x}(t)=\binom{x_{1}}{x_{2}}
$$

(a) Find a generalized eigenvector of rank 2 of \mathbf{A}.
(b) Solve

$$
\mathbf{x}^{\prime}(t)=\mathbf{A} \mathbf{x}(t)
$$

(c) Set up the appropriate form of a particular solution $\mathbf{x}_{p}(t)$ of the non-homogeneous equation

$$
\mathbf{x}^{\prime}(t)=\mathbf{A} \mathbf{x}(t),+\binom{t}{e^{-2 t}}
$$

but do not determine the values of the coefficient vectors.
7. Use the method of variation of parameters or otherwise to solve

$$
\begin{aligned}
\binom{x_{1}}{x_{2}}^{\prime}= & \left(\begin{array}{cc}
3 & 4 \\
-1 & -2
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{0}{e^{-t}} . \\
& - \text { End of Paper - }
\end{aligned}
$$

